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Partial Differential Equations for Heat Conduction

Analysis of Frozen Layer Shifting

In analyzing partial differential equations for heat conduction on the analog computer,
the boundary face between two different substances has been usually assumed not to shift.
In the present example, however, since temperature distribution in the process of freezing
is expressed as a function of time, the boundary face between frozen and non-frozen layer
is unintentionally displaced with time, presenting a very interesting way of analysis by the

analog computer.

1. Physical Conditions

In the process of freezing, in which the frozen layer proceeds with time, shifting
of the boundary face between frozen and non-frozen layers occurs, and the position of

boundary face and temperature distribution are sought for as a function of time.

In

this case, heat conduction is assumed to occur unidirectionally.
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where A, thermal conductivity of ice
Ay thermal conductivity of water
Cp, specific heat of ice
Cpo specific heat of water
o1 ¢ density of ice
02 density of water
C initial temperature
ta atmospheric temperature
h thermal conduction coefficient of air
7. heat of fusion
7. heat of fusion
0 time
t, temperature of frozen layver
i, temperature of non-frozen laver
5 distance from the surface of frozen
layer to the boundary face
K, thermal diffusibility of ice
K, thermal diffusibility of water
Q heat density
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The freezing conditions are assumed as follows: the medium is in contact with the
atmosphere of temperature -20°C and infinitely large heat capacity, and convection in
the water phase is neglected.
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Conversion

In the equation of heat conduction
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Let us consider freezing process in unit area,

Heat contained in unit volume is

Q =0PCpt (12)

Putting (12) into (11),
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Assume that the medium to be frozen, with thickness L, is divided into n parts

and the average temperature of each part is ty;, tjo, tis e “{/n

If each part has volume dV (= dx x 1 m?), heat Qncontained in dv is
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if the part is pure water and
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equation,
Fig. 2 The relationship
dQi _ 1 _ ) . - At
S e (CAt)j41-2 (A1) +(Xt)|_1} (16) between Qn and (4t)n
Since |t‘§ 20C, so’(lt)l max <20 x 1.0 5. (A1) i
Taking a favorable scale factor, the computer variable is set to ["’710—

It is easily understood that the maximum of lQi| does not exceed 10* Kcal/dV if the
width of the partition range is set to 0.1 m,

Hence, the equation after scaling becomes as in (17).
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In order to obtain a representation compatible with the machine units of the com-
puter, the graph of Fig., 2 is changed to that of Fig. 3.
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The boundary condition is, at x = 0,
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Operation of Analog Computer

Although the accuracy is much improved by dividing the range as finely as possible
in handling such difference equations as mentioned in the above, in the present experi-
ment, a water depth of 0.8 m is equally divided into 8 steps at 0.1 m intervals, ap-
proximating the total range with 7 difference equations and an algebraic equation.

There are two ways of setting boundary conditions at x = Lm,

t = const.
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and

The latter means that a perfectly insulating wall is placed at x = L, which may be
a good approximation if the wall is regarded as constituting a part of the refrigerating
chamber. However, the former has more practical significance as an approximation
for infinite water depth. Anyway, the more the range is divided, the less error between
different ways of approximation. In the present report, attention was focused on how
the solution waveform is affected by the way of setting boundary conditions Equations.
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The last equation should be replaced for the boundary condition (ﬂ) L:O with
‘=
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The results obtained by analyzing these equations are illustrated in Figs. 4 — 7.
It should be noted that considerable differences occur depending upon the boundary
conditions. As is clear from the fact that the boundary conditions affect the solution
less at the vicinity of the surface, it may be supposed that the more the range is
divided, the less error due to difference in boundary conditions.
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Fig.6 Temperature transition with depth as parameter
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4, Discussion

(1)
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In the present experiment, the point of 0.8 m depth was always held either at a
temperature of 3.9°C or at temperature gradient 0, for computing temperature
changes at points of 0 ~0.7 m depth. These data, however, are not restricted

to the 0.8 m boundary, depending upon time scale keeping operation. For instance,
temperature transition at 1 m depth obtained by setting 0.8 m depth at 3. 9°C can
be read as that 2t 1 m depth obtained by keeping 8 m depth at 3. 9°C, if the time
axis is compressed 1/10 times.

Since the data presentec here are obtained by approximation with division-in-8,

the solution wavelcrms “zke a stepwise transition, differing considerably from
those expected on =i~ nT nrvsical nhenomena. This is inevitable so long as
approximation is souatines, and in order to obtain smooth
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potentiometers. It seems desirab. .~ = . oist as large as the
computer capacity permits, irresn~ i~ ¢ .rz7 il errors, when the partial
differential equations are analvzed.

The displacement of the boundary be .=+ ice and water is plotted as a function
of time in Fig.9, in which the curves nresent some disaccord depending upon the

with each other in time shorter than 50 “rs. This is also ascribed to the problem
of division number stated in (2): the larger the number of divisions, the less error
due to boundary condition setting. In this analysis, displacement of boundary
layers within the same section is not taken into consideration.

This computation was executed in response to a request from the Engineering
Faculty, Kanazawa University. The model employed was HITACHI 505 High
Precision Analog Computer. If potentiometers are saved as much as possible,
the necessary composition is as follows:

Integrating amplifier 7
Summing amplifier 9
Sign changer 16
Potentiometer 20
Dead zone unit 7
Diode 186
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Fig. 10  Block Diagram

4 : time scale factor (=0.4)



